
Stephen Checkoway

Programming Abstractions
Lecture 22: Variable Bindings

Announcements

HW 6—MiniScheme A–E—due Friday

Office Hours: Friday 13:30–14:30

Lexical Binding

Variable usage

There are two ways a variable can be used in a program:

‣ As a declaration

‣ As a "reference" or use of the variable

Scheme has two kinds of variable declarations

‣ the bindings of a let-expression and

‣ the parameters of a lambda-expression

Scope of a declaration

The scope of a declaration is the portion of the expression or program to which

that declaration applies

Lexical binding

‣ Scope of a variable is determined by textual layout of the program

‣ C, Java, Scheme/Racket use lexical binding

Dynamic binding

‣ Scope of a variable is determined by most recent runtime declaration

‣ Bash and classic Lisp use dynamic binding

Java example

What is the scope of y in this Java program?

Could we print y instead of x in the last line?

 

public static void main(String[] args) {

 int x = 1;

 while (x < 10) {

 int y = x;

 System.out.println(y);

 x += 1;

 }

 System.out.println(x);

}

Scope in Scheme

Scope of variables bound (declared) in a let is the body of the let  
Scope of parameters in a λ is the body of the λ

(let ([x 5]

 [y 10])

 (* ((λ (z) (+ z y)) 7)

 x

 y))

Shadowing bindings

Shadowing: Declaring a new variable with the same name as an existing

variable in an enclosing scope

(let ([x 5]

 [y 10])

 (* ((λ (x) (+ x y)) 7)

 x

 y))

We say that the inner binding for x shadows the outer binding for x

Determining the appropriate binding

Start at the use of a variable

Search the enclosing regions starting with the innermost and working outward

looking for a binding (declaration) of the variable

The first binding you find is the appropriate binding

(If there are no such bindings, we say the variable is free; Racket requires all

variables be bound)

1. (λ (x y z)

2. (if x

3. (let ([y 10]

4. [z 20])

5. (+ x y z))

6. (- y z)))

Which row of the table corresponds

to line numbers where the variable

indicated in the column was bound?

E.g., E indicates that the variables

used in line 5 are bound in lines 1,

3, and 4 and the variables used in

line 6 are bound in lines 3 and 4.

10

Line 5 x Line 5 y Line 5 z Line 6 y Line 6 z

A 1 1 1 1 1

B 2 3 4 3 4

C 2 3 4 1 1

D 1 3 4 1 1

E 1 3 4 3 4

Contour diagrams

Draw the boundaries of the regions in which variable bindings are in effect

(λ (x)  
 (λ (y)  
 ((λ (x) (x y)) x)))

The body of a let or a lambda expression determines a contour

Each variable refers to the innermost declaration outside its contour

(λ (x y z)

 (if x

 (let ([y 10]

 [z 20])

 (+ x y z))

 (- y z)))

Which is the correct contour for the

variable x?

A. Blue dotted rectangle

B. Green dashed rectangle

C. Purple solid rectangle

D. Orange fuzzy rectangle?

12

(λ (x y z)

 (if x

 (let ([y 10]

 [z 20])

 (+ x y z))

 (- y z)))

Which is the correct contour for the

inner variable y?

A. Blue dotted rectangle

B. Green dashed rectangle

C. Purple solid rectangle

D. Orange fuzzy rectangle?

13

Lexical depth

The lexical depth of a variable reference is 1 less than the number of contours

crossed between the reference and the declaration it refers to

(λ (x)  
 (λ (y)  
 ((λ (x) (x y)) x)))

In (x y)

‣ x has lexical depth 0

‣ y has lexical depth 1

The other x has lexical depth 1

What is the lexical depth of m in the expression (* m x) in this procedure?

(define fun

 (λ (m lst)

 (foldl (λ (x acc) (+ (* m x) acc))

 0

 lst)))

A. 0

B. 1

C. 2

D. 3

E. 4

15

Lexical addresses
(depth, position)

We can use the lexical depth of a variable along with the 0-based position of the

variable in its declaration to come up with a lexical address of the variable

(let ([x 3]

 [y 4])

 (λ (a b)

 (λ (c)

 (a (+ (b x) c)))))

Lexical addresses are essentially pointers to where the variable can be found on

the run-time stack; can eliminate names

(1,0) (1,1) (2,0) (0,0)

Dynamic binding vs.
lexical binding

Scope of a declaration

The scope of a declaration is the portion of the expression or program to which

that declaration applies

Lexical binding

‣ Scope of a variable is determined by textual layout of the program

‣ C, Java, Scheme/Racket use lexical binding

Dynamic binding

‣ Scope of a variable is determined by most recent runtime declaration

‣ Bash and classic Lisp use dynamic binding

What is the value of y in the body of (f 2)

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

With lexical (also called static) binding: y is 3

‣ The value of y comes from the closest lexical binding of y, namely [y 3]

With dynamic binding: y is 17

‣ The value of y comes from the most-recent run-time binding of y, namely  

[y 17]

Lambdas in a lexically-scoped language

A lambda expression evaluates to a closure which is a triple containing

‣ the environment at the time the lambda is evaluated

‣ the parameters

‣ the body of the lambda

When we apply the closure to argument expressions

‣ we evaluate the arguments in the current environment

‣ extend the closure's environment with bindings of parameters to argument

values

‣ evaluate the closure's body in the extended environment

Lexical binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Lexical binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Lexical binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f closure

Lexical binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f closure

Variable Value

y 17

Lexical binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f closure

Variable Value

y 17

Variable Value

x 2

Lambdas in a dynamically-scoped language

A lambda expression evaluates to a procedure which is just a pair containing

‣ the parameters

‣ the body of the lambda

When we apply the procedure to argument expressions

‣ we evaluate the arguments in the current environment

‣ extend the current environment with bindings of parameters to argument

values

‣ evaluate the lambda's body in the extended environment

Dynamic binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Dynamic binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Dynamic binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f procedure

Dynamic binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f procedure

Variable Value

y 17

Dynamic binding example

(let ([y 3])

 (let ([f (λ (x) (+ x y))])

 (let ([y 17])

 (f 2))))

Variable Value

y 3

Variable Value

f procedure

Variable Value

y 17

Variable Value

x 2

